ERC Advanced Grant for OPTIMAS member Professor Burkard Hillebrands

Supercurrents with magnons: The basis for future data processing technologies

Physicist Professor Burkard Hillebrands from the University of Kaiserslautern receives an ERC Advanced Grant, one of the highest awards from the European Research Council (ERC). The Grant is endowed with an amount of more than 2.4 million euros. With this funding Hillebrands will open up a new field of research: supermagnonics. He and his team will investigate macroscopic magnonic quantum phenomena with the aim to make data processing significantly more efficient.

The award-winning concept of supermagnonics is an advancement of magnonics – a field which was already fundamentally co-developed by Hillebrands. It is based on magnetic phenomena in crystal lattices that are caused by the spin, or intrinsic angular momentum, of electrons. Immaterial spin waves (known as magnons) serve as a medium and carrier of information. As waves are able to transmit more information than electrons and heat generation can be kept to a minimum, this creates completely new means of making data processing substantially more efficient. One day this may lead to new systems of computer technology.

Quantum phenomena on a macroscopic scale

With his supermagnonic research, Professor Hillebrands seeks to take the field of magnonics a critical step forwards. “We want to study phenomena that are analogous to superconductivity with electrons or to superfluidity in super-cooled liquid helium, i.e. phenomena which have macroscopic dimensions,” the researcher explains. “Quantum effects are usually only observed at an atomic or subatomic scale.”

In previous experiments he and his team have already demonstrated that magnons can form what is known as a Bose-Einstein condensate (BEC). This is a special type of matter which is characterised by the fact that all the particles (in this case magnons) adopt an identical, precisely defined basic state. By manipulating this condensate accordingly, it is possible to trigger magnonic supercurrents that flow without any loss of energy – these can be applied for information processing.

Over the next five years, Burkard Hillebrands intends to use the ERC grant to explore the basic mechanisms behind supermagnonics. In doing so, he will benefit from his many years of experience as a pioneer of magnonics. “In my team that belongs to the State Research Center OPTIMAS, we have developed the diagnostic tool of Brillouin spectroscopy over the course of many years. This is now proving to be invaluable to us”, emphasizes the experimental physicist. “In simple terms, it enables us to analyze the magnonic processes within the magnetic crystal films by way of scattering laser light.” The research planned by Hillebrands is complemented ideally by the ERC Starting Grant recently awarded to his co-worker Dr Andrii Chumak for advancing the technological aspects of magnonics.

Excellent research achievement

Every year the European Research Council awards funding in the form of the ‘ERC Advanced Grant’ amounting to up to 2.5 million euros per research project to established scientists who are leading in the respective field of research. It is hence the European Union’s most important scientific prize. It is granted to internationally recognized top researchers who have gained attention for their outstanding achievements and ground-breaking project ideas. The fact that one of these awards has now been conferred to Professor Hillebrands shows the increasing significance of the field of magnonics. “We do not just see the award as a personal accolade,” the researcher notes, “but also as motivation for the whole team who will carry on the successful research with huge determination.”

The first aim will be the development of robust laboratory methods that can be used to create magnonic supercurrents in BECs. A key aspect of this is to learn how these supercurrents can be controlled by electrical fields. “This is absolutely pioneering work,” the physicist points out, “here we are working with high risks, but the gains also stand to be huge. This may even mean that our research findings might open up completely different and unexpected opportunities.”