Ultraschnell gefilmt
Wie schnell sich die elektrischen Eigenschaften bestimmter fester Materialien unter Bestrahlung mit intensiven Laserpulsen verändern, stellen Forschende der Christian-Albrechts-Universität zu Kiel (CAU) gemeinsam mit Mitarbeitern des Landesforschungszentrums OPTIMAS der TU Kaiserslautern, und dem JILA Institut (Boulder, Colorado, U.S.A.) in der hochangesehenen Fachzeitschrift Nature vor:
Collapse of long-range charge order tracked by time-resolved photoemission at high momenta, T. Rohwer, S. Hellmann, M. Wiesenmayer, C. Sohrt, A. Stange, B. Slomski, A. Carr, Y. Liu, L. Miaja Avila, M. Kalläne, S. Mathias, L. Kipp, K. Rossnagel, M. Bauer; Nature 471, 490-493 (2011), doi:10.1038/nature09829.
Die WissenschaftlerInnen verfolgen den Ablauf elektronischer Schaltprozesse, die innerhalb kleinster Bruchteile einer Sekunde (Femtosekunden) stattfinden. Auf Basis der dadurch gewonnenen Erkenntnisse sollen künftig beispielsweise maßgeschneiderte und ultraschnelle opto-elektronische Bauteile realisiert werden, um Datenübertragungsraten zu erhöhen oder optische Schalter zu beschleunigen. "Die von uns entwickelte Technik ermöglicht es, wesentlich umfassendere Filme extrem schneller Vorgänge aufzunehmen, als es mit bisherigen ähnlichen Techniken möglich war", erklärt Prof. Bauer (CAU Kiel). "Damit können wir beispielsweise Phasenübergänge in Festkörpern oder katalytische Reaktionen an Oberflächen direkt verfolgen." Um die Filme aufzunehmen, verwenden die Kieler Wissenschaftlerinnen und Wissenschaftler ultrakurze Lichtblitze im weichen Röntgenbereich, die sie mit einem speziellen Lasersystem erzeugen. Bauer: "Der Informationsgewinn durch unsere Zeitlupenaufnahmen ist enorm. Wir erhalten ganz neue Einblicke in die zentralen elektronischen Eigenschaften fester Materialien, die für eine Vielzahl aktueller und zukünftiger Technologien zum Beispiel in der Telekommunikation von Bedeutung sind."
Hintergrundinformationen:
Femto bedeutet Billiardstel. Wenn beispielsweise Moleküle miteinander reagieren oder sich Schaltzustände in elektronischen Bauteilen verändern, so sind auf atomaren Skalen dafür Prozesse verantwortlich, die im Zeitbereich von Femtosekunden ablaufen. Ultrakurze Laserpulse im so genannten "weichen Röntgenbereich" - also Licht mit sehr kurzen Wellenlängen - ermöglichen Momentaufnahmen elektronischer Zustände, die sich beispielsweise während eines Schaltprozesses kurzfristig bilden. In Serie ergeben diese Aufnahmen einen Film, der solche Schaltvorgänge mit bisher unerreichter Detailgenauigkeit und Auflösung in Echtzeit abbildet.