Studie: Offenes Quantensystem zeigt universelles Verhalten
Universelles Verhalten ist eine zentrale Eigenschaft von Phasenübergängen, die sich etwa bei Magneten zeigt, die ab einer bestimmten Temperatur nicht mehr magnetisch sind. Einem Forscherteam aus Kaiserslautern, Berlin und dem chinesischen Hainan ist es erstmals gelungen, ein solches universelles Verhalten in der zeitlichen Entwicklung eines offenen Quantensystems, einem einzelnen Cäsium-Atom in einem Bad aus Rubidium-Atomen, zu beobachten. Diese Erkenntnis hilft zu verstehen, wie Quantensysteme in ein Gleichgewicht übergehen. Das ist etwa für die Entwicklung von Quantentechnologien von Interesse. Die Studie ist in der renommierten Fachzeitschrift „Nature Communications“ erschienen.
Bei Phasenübergängen in der Chemie und der Physik handelt es sich um die Änderungen eines Zustands eines Stoffes, beispielsweise der Wechsel von einer flüssigen in eine gasförmige Phase, wenn ein externer Parameter wie Temperatur oder Druck geändert werden. „Ein gutes Beispiel findet man bei Magneten“, sagt OPTIMAS-Mitglied Professor Dr. Artur Widera, der an der Rheinland-Pfälzischen Technischen Universität Kaiserlautern-Landau (RPTU) das Lehrgebiet Individual Quantum Systems leitet. „Ferromagnete zeigen ohne äußeres Magnetfeld eine spontane Magnetisierung, das heißt, sie sind von sich aus magnetisch, aber nur unterhalb einer bestimmten, kritischen Temperatur. Beim Erhöhen der Temperatur über diesen Punkt durchläuft das System einen kontinuierlichen Phasenübergang, oberhalb dieser Temperatur ist das Material nicht mehr magnetisch.“
In einem Experiment lässt sich ein universelles Verhalten bei einem Phasenübergang gezielt induzieren, in dem man einen Parameter wie Druck, Magnetismus oder aber die Temperatur ändert. Das Besondere ist nun, dass sich dieses Verhalten einer physikalischen Größe „durch wenige kritische Parameter beschreiben lässt“, so Widera weiter, „die wiederum unabhängig von den Details des betrachteten Systems sind.“
Lässt sich dieses universelle Verhalten auch in der Quantenwelt, also auf atomarer und subatomarer Ebene beobachten? In der aktuellen Studie hat das Forscherteam um Widera dafür einzelne Cäsium-Atome in einem bestimmten Quantenzustand gebracht und diese in ein Gas aus Rubidium-Atomen eingetaucht. Bei dieser Kombination aus einem einzelnen Quantensystem (Cäsium), das mit dem Rubidium-Bad wechselwirkt, spricht man in Fachkreisen von einem offenen Quantensystem. Sowohl die Cäsium-Atome als auch die Rubidium-Atome wurden dazu bis fast an den absoluten Nullpunkt abgekühlt.
„Im Gegensatz zu den üblichen Beobachtungen war in unserem Versuch die Zeit der Parameter, der einen kritischen Punkt, oder kritische Zeit, erreichen soll“, sagt Dr. Jens Nettersheim, wissenschaftlicher Mitarbeiter bei Widera und Co-Autor der Studie. Dazu mussten die Forscherinnen und Forscher das Quantensystem mit sehr viel Energie anregen. „Was wir nun beobachtet haben, ist, dass in der zeitlichen Entwicklung des Systems die Entropie erst einmal zunimmt“, ergänzt Ling-Na Wu, die als theoretische Physikerin das Projekt begleitet hat und Erstautorin der Studie ist. Unter dem Begriff Entropie versteht die Forschung ein Maß für die Unordnung in einem bestimmten System und somit auch die Möglichkeit, von Teilchen sich in einem System anzuordnen – wie in diesem Fall die Cäsium- und Rubidium-Atome. Je größer die Unordnung in einem System ist, desto höher ist die Entropie und umgekehrt. Wu: „Dies geschieht so lange, bis die Entropie ihren maximalen Wert erreicht, der dann wieder abnimmt.“
Genau an diesem Punkt, der kritischen Zeit, setzt das universelle Verhalten des Quantensystems ein. Dazu erläutert André Eckardt, Professor für Theoretische Physik an der Technischen Universität (TU) Berlin, der die Theoriearbeiten zu diesem Projekt geleitet hat: „Zu dieser Zeit passiert nun Folgendes: Im übertragenen Sinne verliert das System seine Erinnerung an das, was früher passiert ist, beziehungsweise an den genauen Anfangszustand. Die folgende Dynamik ist universell.“ In der Physik bedeutet das, dass sich das Verhalten mit einer Formel und einem Parameter beschreiben lässt.
Die Studie zeigt, dass es in offenen Quantensystemen universelle Verhalten bezüglich der Zeit gibt. Mit dieser Arbeit tragen die Physikerinnen und Physiker dazu bei, grundlegende Funktionsweisen solcher Systeme besser zu verstehen. „Es ist immer noch nicht ganz klar, wie solche offenen Quantensysteme Energie abgeben, also relaxieren, und wie genau ein thermodynamisches Gleichgewicht erreicht wird“, erläutert Widera.
Viele technische Anwendungen funktionieren heutzutage nur dank der Quantentechnologie, die darin verbaut ist. Zukünftig wird sie eine immer größere Rolle spielen, wie etwa bei Quantencomputern oder Quantensensoren. Daher ist es wichtig, zu verstehen, was in solchen Systemen passiert und wie sie mit ihrer Umgebung wechselwirken.
Die Experimente hat das Team um Widera an der RPTU in Kaiserslautern durchgeführt; die theoretischen Arbeiten zu dieser Studie lieferte die Arbeitsgruppe um Professor Dr. André Eckardt vom Institut für Theoretische Physik an der TU Berlin, daran beteiligt war auch Ling-Na Wu von der Hainan Universität in China.
Die Studie ist in der renommierten Fachzeitschrift Nature Communications erschienen: „Indication of critical scaling in time during the relaxation of an open quantum system“
DOI: doi.org/10.1038/s41467-024-46054-9
An der RPTU in Kaiserslautern waren die Forschungsarbeiten zu der Studie in das Zentrum für Optik und Materialwissenschaften eingebunden, das im Rahmen der Forschungsinitiative Rheinland-Pfalz gefördert wird.
Fragen beantwortet:
Professor Dr. Artur Widera
Lehrgebiet Individual Quantum Systems
RPTU in Kaiserslautern
Tel.: 0631 205-4130
E-Mail: widera(at)rptu.de